With a key focus on recent developments and advances in the field, this book provides in-depth coverage of topics fundamental to the development of targeted therapeutics. The expansion of targeted modalities in rapidly evolving therapeutic areas, such as immune-oncology, and developments with respect to combination therapies, novel technologies, and the therapeutic application of antibody-drug conjugates, are presented. Additionally, the book builds upon topics discussed in the first edition (2012) where recent innovations warrant elaboration.
This, the second edition of Development of Antibody-Based Therapeutics: Translational Considerations, represents a comprehensive evaluation of progress in the field, which sits alongside the first edition to inform, in detail, professional and academic researchers, as well as graduate students.
Biophysical measurements are one of the critical components necessary for the design of effective translational strategies for lead selection and evaluation of relevant animal species for preclinical safety and efficacy studies. Incorporation of effective translational strategies from the early stages of the antibody development process is a necessity, and when considered, it not only reduces development time and cost, but also fosters implementation of rational decision-making throughout all phases of antibody development. Translational strategies for development of antibody-based therapeutics should allow understanding of the relationship between the ‘unit dose’ and ‘unit effect’ with respect to both beneficial and deleterious effects from early stages of development. The flow of information from later to earlier stages of development should provide opportunities to facilitate selection of more effective and novel next-generation drug candidates. Selection and evaluation of relevant biomarkers in early preclinical development in “relevant” animal models should allow for identifying potential risks to humans and establishing safe First-In-Human (FIH) dosing strategies. Hence, integration of knowledge with respect to target antigen properties such as antigen distribution, expression profile, kinetic properties, target pharmacology, antigen isoforms and pharmacological redundancy in health and disease, as well as antibody design criteria, such as antibody isotype, affinity, PK/PD and safety is a critical necessity for the design of effective translational strategies. Additionally, these factors will further offer critical differentiating characteristics for next-generation antibodies, and novel technologies prove instrumental in generation of bio-improved antibody candidates for market entry. This book will examine many important considerations necessary for the design of effective translational strategies during the development of antibody-based therapeutics.
|